
Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-143317

APPLICATION SOFTWARE
STRUCTURE ENABLES
NIF OPERATIONS

K. W. Fong, C. M. Estes, J. M. Fisher, R. T. Shelton

This article was submitted to
8th International Conference on Accelerator and Large Experimental
Physics Control Systems

October 17, 2001

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

 This report has been reproduced
 directly from the best available copy.

 Available to DOE and DOE contractors from the

 Office of Scientific and Technical Information
 P.O. Box 62, Oak Ridge, TN 37831

 Prices available from (423) 576-8401
 http://apollo.osti.gov/bridge/

 Available to the public from the

 National Technical Information Service
 U.S. Department of Commerce

 5285 Port Royal Rd.,
 Springfield, VA 22161
 http://www.ntis.gov/

 OR

 Lawrence Livermore National Laboratory

 Technical Information Department’s Digital Library
 http://www.llnl.gov/tid/Library.html

THCT003

APPLICATION SOFTWARE STRUCTURE ENABLES NIF
OPERATIONS

Kirby W. Fong, Christopher M. Estes, John M. Fisher, Randy T. Shelton
LLNL, Livermore, CA 94550, USA

Abstract
The NIF Integrated Computer Control System

(ICCS) application software uses a set of service
frameworks that assures uniform behavior spanning the
front-end processors (FEPs) and supervisor programs.
This uniformity is visible both in the way each
program employs shared services and in the flexibility
it affords for attaching graphical user interfaces (GUIs).
Uniformity of structure across applications is desired
for the benefit of programmers who will be maintain-
ing the many programs that constitute the ICCS. In
this paper, the framework components that have the
greatest impact on the application structure are
discussed.

1 INTRODUCTION
The ICCS has extracted into framework software

several capabilities needed by many applications [1].
Along with extensible program components, an object-
oriented (OO) project needs to have patterns for
combining the components into useful and uniform
executable programs. In ICCS these patterns are
expressed in several ways at varying degrees of
formality. Generic procedures are instantiated to create
main programs. Conventions that are reused for
numerous user interfaces provide a common look and
feel for different control panels. Recurring temporal
patterns decouple threads of execution where several
objects on separate computers interact. Idiomatic
techniques make all exception handlers seem similar,
with only the details of the reported exception, not the
structure of the program, varying between examples.
These patterns have been documented and are exploited
at several levels of the ICCS implementation.

2 PROCESSES
All ICCS applications, whether FEPs, supervisors

or servers, are instantiations of an Ada generic
procedure (a generic is a code template). The templates
supply the code for initializing the client side of several
framework services, integrate the creation and
initialization of application objects, and create the tasks
(the threads of execution) that execute the methods of
Common Object Request Broker Architecture
(CORBA) objects when requests come in.

The local system manager is the generic main
program that performs the client setup for message
logging, event and alert propagation, and reservation
frameworks. It is a proxy for the central system
manager remote process.

The start-up process is a collaboration between the
new main program instance, the central system
manager, and the configuration server. The central
system manager process mediates the starting of
processes while assuring the temporal
dependencies—first FEPs, then supervisors, finally
GUIs—and continuously monitoring and reporting
unscheduled process termination.

After instantiation of these framework services
(which are common to all applications) is complete,
the objects that carry out the business of the control
system can be created by the configuration server.
ICCS applications use the factory pattern [2] to
postpone until start-up time binding the identity and
number of objects that go into each application.

The generic main program requires two object
factories, each CORBA objects. Each process’s
factories were custom built to implement the selection
of CORBA objects called configurables, which it can
create upon request; this selection of factory methods is
the only feature that distinguishes the 18 different
FEPs, or the numerous supervisor processes, from each
other.

Each of the different supervisor processes and FEPs
has two distinct factory objects that build, respectively,
either local configurable objects or distributed
configurable objects.

Local configurables are objects that are private to a
process. In an FEP, these are the controllers, which
model computer hardware, input/output boards, ports,
channels, and protocols. Examples include
commercially purchased drivers for video cameras and
Ethernet protocol stacks. Controllers hide the
implementation details of the hardware from the upper
levels of the ICCS. The NIF Project uses a standardized
common set of hardware controllers and has
implemented a controller software that models their
operational features. These controllers are reused in
different FEP applications simply by adding a small
block of code to an FEP’s controller factory.

Distributed configurables are CORBA objects.
Unlike local configurables, they export their interfaces

to the rest of the system. The distributed configurables
in an FEP are called devices. Devices typically model
laser hardware and define the building blocks of the
software system. Examples of devices include multi-
axis actuators for optic alignment, which are
implemented using as many as four hardware-specific
controllers. Whereas controllers belong to the control
point and computer hardware domains, devices belong
in the laser design domain. Like controllers, devices can
be reused across applications simply by adding a small
block of code to an FEP’s device factory.

ICCS application programs are all servers. When
they start, they create and initialize their objects and
then wait for clients to request service. During
instantiation, the generic main program creates several
(typically four) CORBA tasks that become the threads
of execution that wait in an event loop. The number of
these worker tasks determines the maximum number of
different client interactions that can proceed
concurrently. When all worker tasks are occupied,
subsequent invocations are queued by the Ada runtime
and proceed first-in, first-out.

3 SUPERVISORY INTERACTIONS
The Logical Control Unit (LCU) is the base class of

supervisor objects that model the physical portions of
the NIF above the device control point level.
Supervisory applications partition their responsibilities
among LCUs to reflect the grouping of the hardware.

The supervisory application architecture requires that
LCUs frequently need to communicate with each other
and also that GUIs are not tightly bound to particular
application objects. The architectural style described by
Taylor et al [3] led the LCU base class to have methods
for both sending and receiving messages – the so-called
observer pattern [2].

The left side of Figure 1 is an abbreviated class
diagram in the Unified Modeling Language notation.
The Director class has an update subscriber method that
any publisher can call to deliver information to the
subscriber. Thus, any derivative of Director,
particularly the GUI object, can be a subscriber.

In addition, each LCU is a derivative of Director that
adds a publishing capability. Both GUIs and LCUs
subscribe to update messages from an arbitrary
collection of publishers. These messages are
constructed by a class called Data Mapper, which
insulates the private data representation within an LCU
from subscribers’ needs. An LCU can have many data
mappers, each capable of producing some piece of

information, and clients can subscribe to any of the data
mappers of an LCU.

Named Object

Distributed
Configurable

Director

Update
Subscriber

Logical Control
Unit

Attach Mapper

data mappers

specific LCU

2. Attach Mapper

3. Update Subscriber

Director
LCU

1. G
et L

C
U

Ref

GUI Process

Supervisory
Process

Configuration
Server

Figure 1: GUIs use application framework classes.

The right side of Figure 1 shows some typical GUI
interactions. A client GUI consults the Configuration
Framework to obtain a Ref that embodies CORBA
connectivity to the desired LCU, then starts the
subscription by making a call to the Attach Mapper
method of the LCU. Because of this loose coupling
between the GUIs and supervisors, it is feasible to
bring up multiple instances of the same GUI, all
subscribing to the same data mappers. This allows
operators to bring up the same display at multiple
terminals.

Subscribers and publishers are both CORBA objects
and therefore can reside in separate processes. In fact,
most LCUs are implemented as Ada objects in
supervisory applications, while the GUIs implement
their Directors in Java and exploit the substantial
capabilities of the Java environment to render graphic
windows.

4 STATUS PROPAGATION
The status of every device is observed by one or

more supervisory objects and can be displayed on GUIs
upon operator demand. The LCUs employ the status
monitor framework to avoid network polling. The
latency and precision of monitor reports are individually
set by each observing LCU so each maintains a state
that is an appropriately precise image of the device
status. Only changes in a device state that are deemed

significant by the subscriber are sent to the supervisory
application.

The framework is built of components that are
installed in both the FEPs and the LCUs. A
supervisory application requests a device to begin status
monitoring. The device engages the services of the
status monitor, which then begins polling and sending
messages about significant changes back to an object
contained in the LCU. These updates cause the LCU to
evolve its state to reflect the device’s status and
typically to publish new information about its
evolving state using data mappers as described above.

5 GRAPHICAL USER INTERFACES
A GUI framework is provided to facilitate the

development process. GUI framework classes provide a
common set of mechanisms for instantiating graphical
interfaces and directing them to connect to their devices.
General mechanisms are provided for starting the
control panel window, for connecting to the devices and
LCUs to be controlled, and for uniform presentations
such as help menus. All visual style elements, such as
colors and fonts, are defined in the GUI frameworks and
not in individual applications. Java classes have been
built to implement both the general features of the
framework and the specifics of numerous control
interfaces needed for both supervisory and FEP
controls.

Common behavior has been built that permits copies
of the same graphics element to be used either for the
same or for duplicate physical devices. GUI
management applications (e.g., a broadview display or
a device selector) can invoke control panels without
knowing anything about the subordinate besides its
class name and the identity of the device it controls.

6 CORBA CONNECTIONS
Regardless of the particular CORBA product being

used, certain classes of error condition must be
addressed in any distributed application. The ICCS
software framework provides failure recovery
mechanisms that allow application software to function
in the presence of communication failures. Preliminary
work has defined connection abstractions that define a
uniform group of exceptions to which all clients are
expected to respond uniformly.

Typically there are three situations in which
communication failures can occur, corresponding to
initial connection failure, failure of a previously
successful connection, and failure in the middle of a

two-way invocation. The ICCS framework supports
various connection abstractions that clients can
configure for different connection behaviors.

Initial connection failure can occur on the first
invocation on a reference received from another source.
A name service – the configuration framework – is used
to provide CORBA references to client applications.
ICCS addresses initial failure errors by allowing
application programs to be configured to wait for
services’ presence before starting application objects.

Previously successful connection failure can occur
when some object in the system fails after a successful
connection has been established. The client side process
does not know that something unusual has occurred
until it tries to reuse a formerly reliable connection and
receives a communication failure exception. This
failure mode is ameliorated by a connection object that
can be configured to ping the target service prior to
each invocation. If the ping fails, the connection
abstraction can execute recovery logic that will attempt
to refresh the CORBA reference.

Failures in the middle of an invocation caused by rare
process deadlocks, have proved especially difficult to
diagnose. These are investigated by tracing tools.
Future usage of network management may make this
failure mode more amenable to detection.

7 SUMMARY
Experience has shown that construction of uniform,

pattern-compliant application programs have several
benefits. Validated frameworks are widely understood
by the developer team so that implementation tasks can
be shared. Code inspection can assure consistent
behavior among programs that share frameworks.
Enhancements in framework functionality are easily
imported into all applications.

This work performed under the auspices of the U.S.
DOE by LLNL under contract No. W-7405-Eng-48.

REFERENCES
[1] R. Carey, et al., “Large-scale CORBA-distributed

Software Framework for NIF Controls,”
ICALEPCS 2001.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides, “Design Patterns,” Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 1995.

[3] R.N. Taylor et al., “A Component- and Message-
Based Architectural Style for GUI Software,” IEEE
Transactions on Software Engineering, Vol. 2222,
No. 6, June 1996, pp 390–406.

